
October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

1

Test Driven Development

(TDD)

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

2

Long Development Cycles

• Historically, big software development

proceeded “one step at a time”

– Product envisioned from a user point of view

– Requirements specified

– Definition specified

– Design specified

– Code written

– Testing performed

– Documentation written

– Sold to user (who no longer wants it)

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

3

Why did we miss the boat?

• Such software development cycles take months
to years

• Requirements were frozen early

• Requirements change
– User needs change

– Market windows close

– Competition emerges with different features

– Regulations change

– Users couldn’t describe what they wanted accurately

– Etc.

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

4

Agile Methodologies

• Primary purpose – react to changing (or
previously unknown) requirements

• Primary result – software that is closer to
meeting the current requirements

• Examples of Agile Methodologies:

– Continuous Software Evolution

– Extreme Programming

– Lean Programming

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

5

Continuous Software Evolution

• I invented this in ~1988. Nobody else knows what it is.
It is not published.

• Included:
– Iteration planning

– Automated regression testing

– Developers developed code, tests, internal doc, user doc.

– Strong rule: a change to the code HAD to be accompanied by a
change to the tests, the internal doc, and the user doc.

• Failed due to politics
– I tied the scheduling and project management of docs and

testing to the code. The existing management hierarchies were
separate; the wanna-be empire-builders couldn’t handle the
change, and shut me down.

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

6

• In ~1993, I used the CSE technique anyway.

• Agreed on next features to implement with customer ~4
weeks. Requirements always changed.

• With a single command, I could build the code, build the
internal doc, build the external doc, build the tests, run
the tests, and make the Product Release Tape. The
product was always ready to ship.

• New requirements were normal; we only implemented
the features that were actually asked for.

• For me personally, the result was:
– Success!

– Confidence!

– Faith !?!

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

7

How old is “agile”?

• It’s old

• Most of the mechanism that comprises

“agile” is old

• Formalization of the techniques and

standardization of the terminology is new

– The Extreme Programming movement has

done the best job of this so far

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

8

Extreme Programming

• Extreme Programming (XP) is an Agile

Methodology developed by people with a good

ability to formalize the techniques.

• One tool they use to meet the need to handle

changing requirements and shorten the

development cycle: TDD

– In XP, TDD eliminates the need for requirements

tracking and design specification

– In XP, TDD provides automated unit testing,

regression testing, acceptance testing

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

9

How to learn TDD

• Many books are articles now printed and
published on the web

• It’s OK to read one. It almost doesn’t
matter which one.

• Test Driven Development, Kent Beck

• Generally, people are still “learning by
doing”, mostly by “doing it with somebody
that already knows how”

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

10

Definition: Test Driven

Development

• A software development process

– Not a testing technique, per se, but depends

heavily on testing as a tool

• Write tests first – the tests determine what

code is to be written

• Testing is done in a fine-grained fashion

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

11

Characteristics of TDD

• Gets away from big-bang, artistic, “magic happens here”
here software development

• Makes software development predictable on
– Reliability

– Scheduling, development cost

• Results in “clean code that works”
– [Ron Jeffries]

• TDD is generally a white-box unit-testing mechanism
– I will show later how to build it up to broader types of testing

• Taking small steps prevents bugs and the need for
debugging

• Design optional; will emerge from the tests if necessary

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

12

Design not necessary

• First step in the procedure will always be to

identify a small change to be made

• That change can be identified from

– a formal design specification,

– a requirement spec,

– a user story (use case),

– or an ad-hoc informal request from a user.

• All tests are saved forever, and are a record of

requirements.

– The tests replace the requirements and design specs

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

13

Cost of development

Time

C

o

s

t

Traditional

TDD

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

14

Personal Opinions

• Only “10%” of the programmers out there

can handle TDD to the level of consistency

that we need, without micromanagement.
• (With micromanagement, nearly every programmer

out there can handle it)

• Only “10%” of the programmers out there

can handle Extreme Programming (XP),

due to the need to wear too many hats.

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

15

Rules for developers

• Unit testing is not separable from coding

• Start as simply as possible

• Write new code ONLY if a test is failing
– The tests provide the reason for writing a line of code

– Write a failing test before writing a line of code

• Eliminate duplication of code and simplify code
ruthlessly
– Fewer lines of code mean fewer tests to write and
maintain, prevents mushrooming of the test base

• ALL tests are saved in the automated regression
test suite

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

16

Technique

• Write a single failing test

• Run the failing test

– “Proves” that the test is correct

• Write minimal code that fixes the test

• Run the test again

– “Proves” that the code is correct

• Refactor towards a better design

• Run the test again

– “Proves” that the better code is still correct

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

17

Technique 2

• Identify a “smallest possible” change to be

made

• Implement test and (the one line of) code

for that change (see previous slide)

• Run all tests

• Save test and code together in source

control system

• Repeat

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

18

Elements of TDD unit tests

• Testing and reporting tool (xUnit)

• Test suites (groups of tests)

• Tests

• Mock resources

• Test library (assert implementations, etc.)

• Product-specific setup library

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

19

The Form of a test

• Test-group (Container) Setup

• Test-specific Setup

• Invoke functionality

• Test results

• Test-specific Teardown (if any)

• Test-group Teardown

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

20

Organization

• Use “libraries” (in OO, these may be

classes)

– Global Utilities (e.g., for assertions)

– Test-group Utilities (e.g., for setups)

– Test-specific Utilities for test convenience

– Utilities for test setups (initialization)

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

21

Define: refactoring

• Rewriting already-working code for the

purposes of:

– Elimination of duplicate code

– Simplify testing and coding

– Following accepted software engineering

principles

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

22

Performance

• The entire test suite needs to run in a few

minutes, to encourage programmers to run them

all regularly

• There are thousands of tests

• Oh, yeah. Like that’s going to work!

• Use “Mock” resources if necessary to speed up

the tests

– E.g., in-memory database, microcontroller emulator

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

23

Why does TDD work?

• The (sometimes tedious) routine leads the

programmers to think about details they

otherwise don’t (because they’ve bitten off

more than they can chew)

• Specifically, test cases are thought

through before the programmer is allowed

to think about the “interesting part” of how

to implement the functionality

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

24

Why does TDD work?

• Encourages “divide-and-conquer”

• Programmers are never scared to make a

change that might “break” the system

• The testing time that is often squeezed out

of the end of a traditional development

cycle cannot be squeezed out.

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

25

Building from the ground up

• Tests and code are written “bottom up”

• Tests build upon each other until they

represent user actions and acceptance

tests (sequences of user actions)

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

26

Technique 3

• Test and implement a low-level function (using

previous Techniques)
• (Notice I didn’t say “implement and then test a function”?

Subtle, eh? You will be assimilated.)

• Test and implement a higher-level function that

invokes the lower-level function

• Test all the logic in the higher-level function as

expected; use as many tests as necessary

• Include one test that convinces you that the

higher-level function called the lower-level one

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

27

Technique 4

• Build higher- and higher-level tests

• Build tests that represent user actions
such as entering a piece of data and
hitting “OK”

• Build tests that string together a series of
user actions that represent Acceptance
Test cases

• Demonstrate the Acceptance Tests to the
user(s) regularly

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

28

More on higher-level testing

• To support using TDD as the mechanism

for writing tests beyond unit tests, such as

functional tests and acceptance tests, the

most important rule to follow is to use

descriptive test names

October

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this document

is permitted in any medium, provided this notice is preserved.

29

• Examples of real tests in Sphygmochron

• Demo of COMUnit on Sphygmochron

• Drawings of elements of unit tests

• Next steps
– Implement features in spreadsheet using TDD

– Write a Phoenix Sphygmochron Development
Process, TDD is at the core, in form specified by
Chris’ Phoenix Process Framework, references FDA
GMP CFR QSR to show where the QSR is being met

