
October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

1

Test Driven Development

Demo

Using COMUnit to drive

development of Visual Basic

macros in a spreadsheet

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

2

Framework

(a.k.a. Test Harness)

• All TDD test frameworks (xUnit) include a simple

tool to run the tests and report the errors.

• The framework typically allows individual tests to

be run, or groups of tests to be run.

• The framework typically shows details about

failures.

• The framework typically shows a green/red

status bar. (red=test failures)

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

3

The test execution User Interface

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

4

Elements of the test execution

User Interface

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

5

Elements of the test execution

User Interface

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

6

Elements of the test execution

User Interface

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

7

Elements of the test execution

User Interface

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

8

The function to be tested

• Demo testing part of a standard deviation

function in the original spreadsheet code
• The calculation is done in two steps, according to a

standard deviation formula often used in programs that

keep “running sums” as they traverse over data:

– Add up the samples and the sum of samples

– “Finish” the calculation according to this formula:

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

9

Getting started

• Load the spreadsheet that contains the test

functions provided by COMUnit.

• Remember the TDD cycle:

– Write a test

– Add the test name to the list of tests to run

– Compile (fails on missing function)

– Write stub for the function to be tested

– Run tests, test fails

– Implement function to be tested

– Run tests again, test passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

10

Public Sub testFinishStdDevWith3DataPoints(oTestResult As TestResult)

Dim result As Double

' the data points are 7,8,9

result = FinishStdDev(3, 7 + 8 + 9, 49 + 64 + 81)

oTestResult.AssertEqualsDouble 1, result, 0.1

End Sub

The first Test function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

11

Adding test name to list of tests

Public Property Get ITestContainer_TestCaseNames() As Variant()

' TODO: add the names of your test methods as a parameter into the Array() function

ITestContainer_TestCaseNames = Array(_

"testFinishStdDevWith3DataPoints" _

)

End Property

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

12

“Compile” fails

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

13

Write stub function

• Doesn’t actually compute the return value yet

Function FinishStdDev(N, sumOfSamples, sumOfSquares)

FinishStdDev = 0

End Function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

14

Run tests, test fails

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

15

Implement function to be tested

• Here’s the function from the original

Sphygmochron spreadsheet. I’m leaving a few

lines commented out because we don’t need them

yet. (I’m “implementing” the smallest possible bit

of the code to make the test pass.)

Function FinishStdDev(N, sumOfSamples, sumOfSquares)

temp = ((N * sumOfSquares) - (sumOfSamples ^ 2)) / (N * (N - 1))

'If temp < 0 Then

' temp = temp * -1

'End If

FinishStdDev = Sqr(temp)

End Function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

16

Run tests, test now passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

17

Write another test

Public Sub testFinishStdDevWith1DataPoint(oTestResult As

TestResult)

Dim result as Double

' the data point is 7

result = FinishStdDev(1, 7, 49)

oTestResult.AssertEqualsDouble 0, result, 0.0

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

18

Run new test, it fails

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

19

Write code that makes the test run

Function FinishStdDev(N, sumOfSamples, sumOfSquares)

If (N = 1) Then

FinishStdDev = 0

Else

temp = ((N * sumOfSquares) - (sumOfSamples ^ 2)) / (N * (N - 1))

'If temp < 0 Then

' temp = temp * -1

'End If

FinishStdDev = Sqr(temp)

End If

End Function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

20

Run (all) tests, new test passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

21

Example error checking test

Public Sub testFinishStdDevWithBadInputNegativeIntermediateResult(oTestResult As

TestResult)

Dim result As Double

On Error GoTo ErrorCheck

' the data points are 1,2,3, the sum of the squares should have been 14, not 5

result = FinishStdDev(3, 6, 5)

oTestResult.AddFailure ("Expected 'invalid input' error, but didn't get it")

Exit Sub

ErrorCheck:

oTestResult.AssertEqualsError Err, 50000

oTestResult.AssertEqualsString "FinishStdDev", Err.Source

oTestResult.AssertEqualsString "Invalid Input", Err.Description

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

22

Run tests, error checking test fails

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

23

All failures were in the new test

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

24

Adding error checking

• The original code in the Sphygmochron had that

“If Temp < 0” code to prevent the square-root

operation from aborting on negative numbers

• However, a negative number could never occur

there, and it prevented the original programmer

from detecting bad input such as in our current

test

– We have found two errors (or at least weaknesses) in

the original code

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

25

Write error checking code

Function FinishStdDev(N, sumOfSamples, sumOfSquares)

If (N = 1) Then

FinishStdDev = 0

Else

temp = ((N * sumOfSquares) - (sumOfSamples ^ 2)) / (N * (N - 1))

'If temp < 0 Then

' temp = temp * -1

'End If

If (temp < 0) Then

Err.Raise 50000, "FinishStdDev", "Invalid Input"

End If

FinishStdDev = Sqr(temp)

End If

End Function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

26

Run tests, error checking test

passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

27

Write a new test

• This test should have worked, but I screwed it up.

It was “too hard” to write. The first argument, the

number of data points, should have been 5.

Public Sub testFinishStdDevWith5DataPoints(oTestResult As TestResult)

Dim result As Double

' the data points are 2, 4, 6, 8, 10

result = FinishStdDev(3, 30, 2 * 2 + 4 * 4 + 6 * 6 + 8 * 8 + 10 * 10)

oTestResult.AssertEqualsDouble 3.16227, result, 0.0001

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

28

Run tests, newest test fails

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

29

Fix the new test

• This test should have worked, but I screwed it up.

It was “too hard” to write. The first argument, the

number of data points, should have been 5.

Public Sub testFinishStdDevWith5DataPoints(oTestResult As TestResult)

Dim result As Double

' the data points are 2, 4, 6, 8, 10

result = FinishStdDev(5, 30, 2 * 2 + 4 * 4 + 6 * 6 + 8 * 8 + 10 * 10)

oTestResult.AssertEqualsDouble 3.16227, result, 0.0001

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

30

Run tests, now it passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

31

Refactor to simplify tests
• Now that all the tests are running, it’s OK to refactor a little bit

to make it easier to write and maintain the tests

• I write a utility function to help prepare the arguments to the

function being tested

Function utilCallFinishStdDev(inputdata As Variant)

Dim N, sumOfSamples, sumOfSquares

Dim i

N = UBound(inputdata) + 1

sumOfSamples = 0

sumOfSquares = 0

For i = 0 To UBound(inputdata)

sumOfSamples = sumOfSamples + inputdata(i)

sumOfSquares = sumOfSquares + inputdata(i) * inputdata(i)

Next i

utilCallFinishStdDev = FinishStdDev(N, sumOfSamples, sumOfSquares)

End Function

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

32

Refactor to simplify tests

• I use the utility function in all the tests possible

• I no longer need the comment telling me what the

data points are, to count the points, nor compute

either of the sums

• This test is simpler and much easier to get right

Public Sub testFinishStdDevWith5DataPoints(oTestResult As TestResult)

Dim result As Double

' the data points are 2, 4, 6, 8, 10

result = FinishStdDev(5, 30, 2 * 2 + 4 * 4 + 6 * 6 + 8 * 8 + 10 * 10)

result = utilCallFinishStdDev(Array(2, 4, 6, 8, 10))

oTestResult.AssertEqualsDouble 3.16227, result, 0.0001

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

33

Run tests, it still passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

34

Another simplification
• Move the “assertion” down into the utility function

Sub utilCallFinishStdDev(inputdata As Variant, expectedResult As Double,

oTestResult As TestResult)

Dim N, sumOfSamples, sumOfSquares

Dim i

Dim result As Double

N = UBound(inputdata) + 1

sumOfSamples = 0

sumOfSquares = 0

For i = 0 To UBound(inputdata)

sumOfSamples = sumOfSamples + inputdata(i)

sumOfSquares = sumOfSquares + inputdata(i) * inputdata(i)

Next i

result = FinishStdDev(N, sumOfSamples, sumOfSquares)

oTestResult.AssertEqualsDouble expectedResult, result, 0.0001

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

35

Another simplification

• The test itself gets very simple. In fact, all of the

“positive” tests for the FinishStdDev function

become one line long.

Public Sub testFinishStdDevWith5DataPoints(oTestResult As TestResult)

Dim result As Double

result = utilCallFinishStdDev(Array(2, 4, 6, 8, 10))

oTestResult.AssertEqualsDouble 3.16227, result, 0.0001

End Sub

Public Sub testFinishStdDevWith5DataPoints(oTestResult As TestResult)

utilCallFinishStdDev Array(2, 4, 6, 8, 10), 3.16227, oTestResult

End Sub

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

36

Run tests, it still passes

October,

2006

© Copyright 2006, Larry A. Beaty. Copying and distribution of this

document is permitted in any medium, provided this notice is preserved.

37

Wrap-up

• I took 4 lines of code from the original Sphygmochron
code and made it a testable function

• I found a divide-by-zero error, an apparently
unnecessary and poorly-coded “absolute value” function,
and a missed opportunity for detecting bad input data, all
in what we thought were 4 correct lines of code

• Refactoring tests gave me a very easy (1-line)
mechanism to use to write future tests for this function

• If any future programmer changes the function, my tests
prevent from breaking functionality that I know is
important today

• TDD enabled me to do this by encouraging thinking
about valuable test cases before implementing the parts
of the function

