

Datasheet

MaxNova 新宏电子 MicroSD Card

MaxNova, Inc. 新宏电子

6F, No. 16, Li-Hsin Road, Hsinchu Science Park, Hsinchu, Taiwan Tel: +886-3-563-4567⁻Fax: +886-3-563-2727 <u>www.maxnova.com</u>

Table of Content

Table of Content	1
1. General Description	2
1.1 Scope	2
1.2 System Features	2
1.3 Primary Reference Document	3
1.4 Concept	3
2. Electrical Specifications	4
2.1 Pin Assignment	4
2.2 Bus Topology	5
2.2.1 SD Bus Connection	5
2.2.2 SPI Bus Connection	6
2.2.3 SD Memory Card Hardware Interface	7
3. Mechanical Specifications	8
3.1 Card Package	8
3.1.1 Design and format	8
3.1.2 Reliability and durability	8
3.1.3 Electrical Static Discharge (ESD) requirement	9
3.1.4 External Signal contacts	9
3.2 Mechanical Form Factor	10
4. Operating Conditions	11
4.1 General	11
4.2 Power supply voltage	11
4.3 Bus signal line load	11
4.4 Bus signal levels	12
4.5 Bus timing	13
5. Ordering Information	14

1. General Description

1.1 Scope

This chapter describes the mechanical and electromechanical feature of the Micro-Sized SD memory card. The Micro-Sized SD is functionally compatible with the SD Memory card but is smaller in dimensions. The Micro-Sized SD can be inserted into a passive SD or miniSD Memory card adapter and operate as an SD Memory card. All technical draft follow DIN ISO standard.

1.2 System Features

The MicroSD Card provides the following features:

- •SD Card protocol compatible.
- •Supports SPI Mode.
- •Targeted for portable and stationary applications for secured (copyright protected) and non-secured data storage.
- •Voltage range:
 - Basic communication (CMD0, CMD15, CMD55, ACMD41): 2.0 to 3.6 V

- Other commands and memory access: 2.7 to 3.6 V

- •Functional clock rate 0-25 MHz.
- •Transparent correction of memory field errors.
- •Application specific commands.
- •Comfortable erase mechanism.

The performance of the communication channel is described in Table 1.

SD Card Using SD Bus	SD Card Using SPI Bus					
Six-wire communication channel (clock, command, 4 data lines)	Three-wire serial data bus (Clock, DataIn, DataOut) + card specific CS signal (hardwired card selection)					
Error-protected data transfer	Optional non-protected data transfer mode available					
Single or multiple block oriented data transfer	Single or multiple block oriented data transfer					

Note: The capacity is the un-formatted size. Actual user capacity may be smaller after the cad format.

1.3 Primary Reference Document

This Specification is base on and refers extensively to:

SD Memory Card Specifications Part 1 PHYSICAL LAYER SPECIFICATION Version 1.10 October 2004

1.4 Concept

The functions of the Micro-Sized SD package are:

- Protecting the chip
- Easy handling for the end user
- Reliable electrical interconnection
- Bearing textual information and image
- Customer appeal

The functions of the Micro-Sized SD Connector are:

- Attaching and fixing the card
- Electrical interconnecting the card to the system board
- Protection against card inverse insertion

The functions of the Micro-Sized SD Adapter are:

- Providing the ability to use the Micro-Sized SD in an SD Memory Cards socket
- Providing the ability to use the Micro-Sized SD in a miniSD Memory Card socket

2. Electrical Specifications

2.1 Pin Assignment

Figure 1: Contact Area

 Table 2: Micro-Sized SD Contact Pad assignment

Pin	SD Mode			SPI Mode		
	Name	Type ¹	Description	Name	Туре	Description
1	DAT2	I/O/PP	Data Line [Bit2]	RSV		
2	CD/DAT3 ²	I/O/PP ³	Card Detect /	CS	$ ^3$	Chip Select (active
			Data Line [Bit3]			low)
3	CMD	PP	Command/Response	DI		Data In
4	V _{DD}	S	Supply Voltage	V_{DD}	S	Supply voltage
5	CLK		Clock	SCLK		Clock
6	V _{SS}	S	Supply voltage	Vss	S	Supply voltage
			ground			ground
7	DAT0	I/O/PP	Data Line [Bit0]	DO	O/PP	Data out
8	DAT1	I/O/PP	Data Line [Bit1]	RSV		

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers
- 2) The extended DAT line (DAT1-DAT3) is input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1 -DAT3 lines in input mode, as well, while they are not used. It is defined so, in order to keep compatibility to MultiMediaCards.
- After power up this line is input with 50KOhm pull-up (can be used for card detection or SPI mode selection). The pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command

2.2 Bus Topology

2.2.1 SD Bus Connection

The SD Memory Card system defines two alternative communication protocols: SD and SPI. Applications can choose either one of modes. Mode selection is transparent to the host. The card automatically detects the mode of the reset command and will expect all further communication to be in the same communication mode. Therefore, applications that use only one communication mode do not have to be aware of the other. In High-Speed mode, only one card can be connected to the bus.

The SD bus includes the following signals:

CLK: Host to card clock signal CMD: Bidirectional Command/Response signal DAT0 - DAT3: 4 Bidirectional data signals V_{DD}, V_{ss}: Power and ground signals

Figure 2 SD Bus Connections

2.2.2 SPI Bus Connection

The SPI compatible communication mode of the SD Memory Card is designed to communicate with a SPI channel, commonly found in various microcontrollers in the market. The interface is selected during the first reset command after power up and cannot be changed as long as the part is powered on.

The SPI standard defines the physical link only, and not the complete data transfer protocol. The SD Memory Card SPI implementation uses the same command set of the SD mode. From the application point of view, the advantage of the SPI mode is the capability of using an off-the-shelf host, hence reducing the design-in effort to minimum. The disadvantage is the loss of performance, relatively to the SD mode which enables the wide bus option. The SD Memory Card SPI interface is compatible with SPI hosts available on the market. As any other SPI device the SD Memory Card SPI channel consists of the following four signals:

CS: Host to card Chip Select signal **CLK:** Host to card clock signal **DataIn:** Host to card data signal **DataOut:** Card to host data signal

Figure 3 SPI Bus Connections

2.2.3 SD Memory Card Hardware Interface

The SD Memory Card has six communication lines and three supply lines:

• CMD: Command is a bidirectional signal. The host and card drivers are operating in push pull mode.

• **DAT0-3**: Data lines are bidirectional signals. Host and card drivers are operating in push pull mode.

• CLK: Clock is a host to card signal. CLK operates in push pull mode.

• **V**_{DD}: V_{DD} is the power supply line for all cards.

• Vss is ground line for all cards.

When DAT3 is used for card detection, RDAT for DAT3 should be unconnected and a resistor should be connected to the ground.

RDAT and RCMD are pull-up resistors protecting the CMD and the DAT lines against bus floating when no card is inserted or when all card drivers are in a high-impedance mode. The host shall pull-up all DAT0-3 lines by RDAT, even if the host uses SD Memory Card as 1 bit mode-only in SD mode. Also, the host shall pull-up all "RSV" lines in SPI mode, even though they are not used.

Refer to SD Memory Card Specifications Part1, Physical Layer Specification Version 1.10

3. Mechanical Specifications

3.1 Card Package

Every card package shall have the characteristics described in the following sections.

3.1.1 Design and Format

Dimensions,	11 mm x 15 mm; (min. 10.9mm x 14.9mm; max.11.1mm x
Micro-	15.1 mm)
Sized SD package	Testing according to MIL STD 883, Method 2016
Thickness	Inter Connect Area: 0.7mm+/-0.05mm
	Card Thickness: 0.95mm Max
	Pull Area: 1.0mm +/-0.1mm
Surface	Plain (except contact area)
Edges	Smooth edges
Inverse insertion	Protection on right corner (top view)
Position of ESC	Along middle of shorter edge
contacts	

Table 3: Micro-Sized SD – Dimensions Summary

3.1.2 Reliability and Durability

Table 4: Reliability and Durability

Temperature	Operation: -25°C / 85°C
	Storage: -40°C (168h) / 85°C (500h)
Moisture and	Operation: 25°C / 95% rel. humidity
corrosion	Storage: 40°C / 93% rel. hum./500h
	Salt water spray:
	3% NaCl/35C; 24h acc. MIL STD Method 1009
Durability	10000 mating cycles.
Bending 1	10N
Torque 1	0.10N*m, ± 2.5° max
Drop test	1.5m free fall
UV light exposure	UV: 254nm, 15Ws/cm2 according to ISO 7816-1
Visual inspection	No mold skin; complete form;
shape and form 1	No cavities surface smoothness <= -0.1 mm/cm2 within contour;
-	No cracks; no pollution (fat, oil dust, etc.)

Note: SDA's recommended test methods for torque, bending and warpage are defined separately.

3.1.3 Electrical Static Discharge (ESD) Requirement

ESD testing should be conducted according to IEC 61000-4-2 Required ESD parameters are: (1) Human body model +- 4 KV 100 pf / 1.5 K ohm (2) Machine model +- 0.25 KV 200 pf / 0 ohm Contact Pads: +/- 4kV, Human body model according to IEC 61000-4-2 Non Contact Pads area: +/-8kV (coupling plane discharge) +/-15kV (air discharge) Human body model according to IEC61000-4-2 The SDA's recommended test methods for the non-contact/air discharge tests are given in a separate Application Note document.

3.1.4 External Signal Contacts (ESC)

Table 5: Micro-Sized SD Package - External Signal Contacts

Number of ESC	8 minimum
Distance from front edge	1.1 mm
ESC grid	1.1 mm
Contact dimensions	0.8 mm * 2.9 mm
Electrical resistance	30m-ohm (worst case: 100m-ohm)

Contact discontinuity /micro-interrupt in accordance with application notes of SD Memory Card Specification Part 1, Physical Layer Specification Version 1.10

3.2 Mechanical Form Factor

Figure 5: Mechanical Description: Form Factor View

The information contained herein is the property of MaxNova Inc., all rights reserved. MaxNova® copyright 2006. MaxNova, Inc. 6F, 16 Li-Hsin Road, Hsinchu Science Park, Hsinchu 300, Taiwan TEL:+886-3-563-4567 FAX:+886-3-563-2727 http://www.maxnova.com

10

4. Operating Conditions

4.1 General

Table 6

General Parameters

Parameter	Symbol	Min	Max.	Unit	Remark
Peak voltage on all lines		-0.3	V _{DD} +0.3	V	
All Inputs					
Input leakage current		-10	10	μA	
All Outputs					
Output leakage current		-10	10	μA	

4.2 Power Supply Voltage

Parameter	Symbol	Min	Max.	Unit	Remark
Supply voltage	V _{DD}	2.0	3.6	V	CMD0, 15, 55, ACMD41 commands
Power up time			250	mS	From 0v to V _{DD,min}

4.3 Bus Signal Line Loading

The total capacitance CL the CLK line of the SD Memory Card bus is the sum of the bus master capacitance CHOST, the bus capacitance CBUS itself and the capacitance CCARD of each card connected to this line:

CL = CHOST + CBUS + N*CCARD

Table 8	Bus Line Loading
---------	------------------

Parameter	Symbol	Min	Max.	Unit	Remark
Pull-up resistance	RCMD RDAT	10	100	kΩ	to prevent bus floating
Bus signal line capacitance	CL		100	pF	fPP ≤20 MHz, 7 cards
Single card capacitance	CCARD		10	pF	
Maximum signal line inductance			16	nH	fPP ≤20 MHz
Pull-up resistance inside card (pin1)	RDAT3	10	90	kΩ	May be used for card detection

4.4 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

Table 9 Voltage Level

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	0.75 V _{DD}		V	IOH=-100 µA @V _{DD,min}
Output LOW voltage	VOL		0.125 V _{DD}	V	IOL=100 µA @V _{DD,min}
Input HIGH voltage	VIH	$0.625 V_{DD}$	V _{DD} + 0.3	V	
Input LOW voltage	VIL	V _{SS} -0.3	$0.25 V_{\text{DD}}$	V	

4.5 Bus Timing

SD Bus Timing

Figure 7

Table 10SD Bus Timing

Parameter	Symbol	Min	Max.	Unit	Remark		
Clock CLK (All values are referred to min (VIH) and max (VIL)							
Clock frequency Data Transfer	f _{PP}	0	25	MHz	CL <100 pE		
Mode					CL 2100 pP		
Clock frequency Identification	f _{OD}	0 ⁽¹⁾ /100K	400	KHz			
Mode (the low freq. is required for		Hz			CL ≤250 pF		
MultiMediaCards compatibility).							
Clock low time	t _{VVL}	10		ns	CL ≤100 pF		
Clock high time	t _{WH}	10		ns	CL ≤100 pF		
Clock rise time	t _{TLH}		10	ns	CL ≤100 pF		
Clock fall time	t _{THL}		10	ns	CL ≤100 pF		
Inputs CMD, DAT (referenced to CLK)							
Input set-up time	t _{ISU}	5		ns	CL ≤25 pF		
Input hold time	t _{IH}	5		ns	CL ≤25 pF		
Outputs CMD, DAT(referenced to CLK)							
Output Delay time during Data	t _{ODLY}	0	14	ns	CL <25 nE		
Transfer Mode					0L 323 pi		
Output Delay time during	todly	0	50	ns	CL <25 nE		
Identification Mode					0L ⊐23 pr		

(1) Zero Hz stops the clock. The given minimum frequency range is for cases where a continuous clock is required.

13

The information contained herein is the property of MaxNova Inc., all rights reserved. MaxNova® copyright 2006.

MaxNova, Inc. 6F, 16 Li-Hsin Road, Hsinchu Science Park, Hsinchu 300, Taiwan

5. Ordering Information

This chapter describes the coding system for MaxNova MicroSD Cards products. To place orders for MaxNova products, contact sales@maxnova.com

MicroSD Flash Cards

 MV128F-SDU – 128 MB MV256F-SDU – 256 MB MV512F-SDU – 512 MB MV01GF-SDU – 1 GB

Table 11	MicroSD Card Par	t Number	Coding System

Digits	1	2	3	4	5	6	7	8	9	10
512MB	М	۷	5	1	2	F	-	S	D	U

	Definition	Digits	Example	Description
1-2	Manufacturing Company	2	MV	MaxNova
		3	128	128 MByte
3-5 Density	Density		256	256 MByte
	Density		512	512 MByte
			01G	01 GByte
6-7	Technology -	2	F -	Technology, F: Flash
8-10	Card type	3	SDU	Micro-Sized Secure Digital Card

Table 12 Coding Definitions